
DOI: 10.2195/lj_NotRev_prinzhorn_en_201710_01  
URN: urn:nbn:de:0009-14-46119 

  
© 2017 Logistics Journal: Not Reviewed – ISSN 1860-5923          Page 1 
Article is protected by German copyright law 

Flexible job-shop scheduling considering human  
 performance fluctuations 

 
Henrik Prinzhorn 
Christian Böning 

Malte Stonis 
 

IPH – Institut für Integrierte Produktion Hannover gGmbh 

 

 

n production, product-related error costs can be re-
duced by focusing on human production factors, such 

as considering human performance fluctuations during 
the day, when production planning with respect to job-
shop scheduling. In this article, the flexible job-shop 
scheduling problem is extended by considering product-
related error costs and logistic costs. Product-related er-
ror costs are increased by over stressing the operative 
workers. Logistic costs are based on work in process and 
throughput time. This cost-based definition enables a pro-
duction plan to be simultaneously optimized in respect of 
both error and logistic costs. The product-related error 
costs and flexible job-shop scheduling problem are de-
scribed mathematically and a memetic algorithm is also 
presented as an approach. Within the memetic algorithm, 
the evolutionary process is supplemented with a local 
search procedure to improve the ability of solutions and 
repair procedures to rectify infeasible solutions. The in-
fluence of product-related error costs on the total costs of 
a production plan, throughput and job waiting times 
within job-shop scheduling is presented.  

[flexible job shop scheduling, memetic algorithm, human perfor-
mance fluctuation, error costs] 

1 INTRODUCTION 

To secure the company’s success, manufacturing com-
panies have to retain existing customers and win new ones. 
This is a major challenge in times of globalized competi-
tion and constant change through shorter product life cycles 
[1]. Many European companies focus on a high product 
quality to strengthen their competitive position [2]. There-
fore, the quality of products has a high importance for com-
panies [3] and ensures long-term success against competi-
tors [4]. Product-related error costs occur if a company 
cannot meet the required quality requirements. Examples 
of product-related error costs are rework, spoilage, problem 
assessments or impairments [5]. According to ROTHLAUF, 
quality deficiencies lead to product-related error costs of 
8% to 30% of the annual revenue [6]. 

To improve product quality, quality management 
methods (e.g. Total Quality Management (TQM), Total 

Productive Maintenance (TPM), Continuous Improvement 
(CI) and KAIZEN), are often used to reduce product-re-
lated error costs [7]. These methods are applied in construc-
tion (e.g. Poka Yoke), quality management and production 
process planning (e.g. FMEA), as well as the optimization 
of machines and processes [8]. However, the optimal use 
of the human production factor is still at the beginning, alt-
hough an operative worker has a direct influence on the 
product quality in production [9] [10]. Considering this, the 
basis for this article are fluctuations in the performance of 
operative workers during the day. Thus, in times when the 
operative worker’s performance slumps, the probability of 
the faulty execution of an operation increases, resulting in 
higher error costs. In contrast, when performance is at its 
peak, the probability of faulty execution decreases.  

In manufacturing industry, one task in production 
planning is the allocation and execution of production jobs 
or operations (“job-shop scheduling”). Scheduling plan-
ning has a high potential for reducing product-related error 
costs (e.g. costs for rework, spoilage, repeatability tests and 
impairments) or of increasing product quality by consider-
ing human performance fluctuations [9]. The job-shop 
scheduling problem (JSP) is one of the most complex com-
binatorial optimization problems in production planning. 
Within the JSP i jobs and k machines are considered. Each 
job consists of j operations, which have to be performed in 
a specified sequence. Each operation is assigned to a tech-
nologically suitable machine [11]. The aim of JSP is to find 
a suitable sequence of machine operations, which typically 
optimizes an objective function. The flexible job-shop 
scheduling problem (FJSP) is an extension of the JSP. 
Within FJSP, operations can be freely assigned to the avail-
able machines [12]. JSP and FJSP belong to the class of 
NP-hard problems [11]. Therefore, for practical problems, 
it is difficult to find an optimal solution within a reasonable 
computation time [11]. For this reason, the focus has 
moved to the development of high-performance heuristics. 
Heuristics do not guarantee finding of optimal solutions, 
but they are suitable for solving most planning problems 
and they need less computing time. 

Minimizing product-related error costs has to be done 
parallel to optimizing logistic objectives within production 
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planning. According to NYHUIS and WIENDAHL, the funda-
mental objective of production logistics is the achievement 
of a maximum delivery capability and reliability with the 
lowest possible logistic and production costs [13]. There-
fore, four logistic objectives (throughput time, delivery re-
liability, utilization and work in process (WIP)) must be 
considered [13] [14]. The throughput time of an operation 
within a job consists of processing time, set up time and 
waiting time. The throughput time can be divided into post-
process waiting time, transport time and pre-process wait-
ing time. Note that short throughput times will lead to 
smaller deviations between completion times and due 
dates, and therefore to high delivery reliability. The deliv-
ery reliability can be measured by the output lateness. To 
achieve low logistic and production costs, it is necessary to 
achieve a maximal utilization of the available capacities, as 
well as low storage and WIP levels to minimize the costs 
of tied-up capital [13] [14]. The conflict between the lo-
gistic objectives is called the “dilemma of scheduling” [14] 
[15]. To ensure a high level of capacity utilization, a high 
WIP level is required. However, a high WIP level leads to 
extended and different throughput times and therefore to 
lower delivery reliability. To avoid unbalanced optimiza-
tion, a multi-objective function is necessary or the objec-
tives, which have to be considered, must be aggregated.  

The structure of this article is as follows: Section 2 
provides an overview of existing research methods on the 
subject of this paper. Section 3 presents a description of a 
problem statement and section 4 includes the correspond-
ing combinatorial optimization model. The heuristic ap-
proach, which has been developed to solve the optimization 
model, is presented in section 5. Section 6 presents the 
computational results and a validation of the developed ap-
proach. The article ends with a summary in section 7. 

2 LITERATURE REVIEW 

There are many approaches for solving the FJSP in lit-
erature. During the last decades, many new procedures for 
generating better solutions were developed. BRUCKNER 
and SCHLIE first described the FJSP and developed a poly-
nomial algorithm which provides an optimal solution for a 
small instance (two jobs) [16]. After that, many heuristic 
approaches were developed for solving examples of a prac-
tical size. Some of these heuristics are Tabu Search (TS), 
Simulated Annealing (SA) and evolutionary procedures 
such as Genetic Algorithms (GA), Ant Colony Optimiza-
tion (ACO) and Artificial Bee Colony (ABC) algorithms, 
or Particle Swarm Optimization (PSO). These heuristics 
can be classified into hierarchical and integrated ap-
proaches [12]. The aim of hierarchical approaches is to re-
duce the complexity of the FJSP by subdividing the prob-
lem into sub-problems. In the next step, the sub-problems 
are solved sequentially [17]. Among the heuristics, GAs 
have proved to be very effective for solving FJSP. Gener-
ally, GAs differ in their coding and decoding scheme, the 

generation of the initial population and the offspring strat-
egy [18] [19]. In the recent past, memetic algorithms (MA), 
in which a GA is combined with a local Search (LS) proce-
dure, became popular to provide a better solution quality 
[20] [21].  

Human performance fluctuates during the day [22] 
[23].The function of organs in the human body (e.g. body 
temperature or blood pressure), are subject to recurring pat-
terns, which are roughly equivalent to the duration of a day 
[24].The concept of circadian rhythm is also used for such 
patterns [25]. The influence of circadian rhythms on human 
performance has been analyzed in a study comparing time-
of-day dependent mouth temperatures, by MONK and 
EMBREY[24]. Statements on time dependent fluctuations of 
human performance are based on an analysis carried out by 
BJERNER [26] and the physiological performance curve de-
veloped by GRAF [23]. According to POTTHAST [27], how-
ever, the physiological performance curve does not con-
sider any central physical activity. Therefore, it is only 
possible to conclude a diminished psychological readiness 
in the human being. Circadian performance fluctuations in 
the operating performance of worker´s in industrial produc-
tion, were first demonstrated by POTTHAST [27]. 

From the 1970s to the 1990s, there are no reported 
filed studies about human planners and schedulers in man-
ufacturing industry. This is due to the development of com-
puters and IT developments for solving complex industrial 
planning and scheduling problems [28]. SANDERSON was 
the first who focused on planning and scheduling from an 
explicitly human factor perspective [29]. On the premise of 
improving quality assurance, RAUCH-GEBBENSLEBEN de-
veloped a simulation model by creating input data for data 
mining methods [30]. In the simulation model, the tool 
wear and the performance of the operative worker are used 
as parameters for determining their influence on product-
related errors. The probability of a product-related error by 
the operative worker can be estimated by using the simula-
tion model. However, job-shop scheduling is not done. 
BUARQUE DE MADECO GUIMARAES has developed a 
method for taking into account circadian performance fluc-
tuations in scheduling [31]. Its application is the scheduling 
of electricians for the maintenance and replacement of 
high-voltage power lines. In this case, operations are allo-
cated according to their stress levels. Therefore, particu-
larly stressful operations are performed when performance 
is at its peak. However, no performance curves specific to 
electrical work were used and product-related error costs 
were also not considered. GLONEGGER has dealt with the 
consideration of human performance fluctuations in the de-
sign of assembly flow systems [32]. The focus is on the in-
fluence of the diversity of product variations on the human 
performance of assembly flow systems, rather than on job-
shop scheduling.  

Based on the literature review, it can be concluded, 
that circadian performance fluctuation has been considered 
in industrial production. At the present time, however, there 
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is no method for job-shop scheduling which considers hu-
man performance fluctuations to reduce product-related er-
ror costs. Therefore, in this article, the FJSP is extended to 
take into account product-related error costs and logistic 
objectives such as WIP, utilization and throughput time. 
The main goal is the development of a simple method, with 
practical application, for helping especially small and me-
dium-sized enterprises (SME) to consider product-related 
error costs in their production planning. Both the conse-
quences of not considering product-related error costs and 
the cost saving potential of doing so are presented in this 
article. Thus, the costs arising from a production plan have 
to be identified. For this purpose, the individual objectives 
are weighted with costs. To solve the extended FJSP for 
practical problem sizes, a heuristic approach is proposed as 
an MA. Note that the MA’s performance in producing so-
lutions to a practical problem has a higher priority than 
finding the optimal solution. Within the evolutionary pro-
cess, a LS is implemented, similar to the approach used by 
RAEESI and KOBTI [33]. In addition, repair procedures are 
used to rectify infeasible solutions during the evolutionary 
process. Furthermore, an aggregated objective function is 
used to minimize the costs arising from a production plan 
[34]. 

3 PROBLEM DESCRIPTION 

The product-related error costs flexible job-scheduling 
problem (pec-FJSP) consists of 𝑖𝑖 = 1, … , 𝐼𝐼 jobs. Each job, 
I, consists of 𝑗𝑗 = 1, … , 𝐽𝐽 operations. Each operation, j, must 
be run on one of the 𝑘𝑘 = 1, … ,𝐾𝐾 machines within the plan-
ning horizon of 𝑡𝑡 = 1, … ,𝑇𝑇 periods. POTTHAST’S human 
performance curve is standardized and assumed for consid-
eration of human performance fluctuations per day [27]. 
POTTHAST defined the performance of workers in produc-
tion as the deviation of the actual processing times to the 
present times. Here, the performance curve additionally in-
cludes time for rework. Moreover, no distinction is made 
between morning and evening types. Thus, it is a “quality-
based” performance curve [35]. The amplitude of the per-
formance curve depends on the complexity of a job (e.g. 
size of frame, number of components, production rate) and 
is estimated relative to the jobs considered. The reason for 
this is that the operational worker’s performance (actual 
processing times) in a complex job is more variable than in 
a less complex job. For the jobs being considered, the max-
imum complexity of a job is 1, equivalent to an amplifier 
𝑎𝑎𝑖𝑖 of 1. The minimum complexity of a job is 0. In this case, 
the performance curve corresponds to a constant. Figure 1 
shows the concept of a qualitative performance curve for a 
worker during the day, which considers the complexity of 
the jobs. According to PRINZHORN, each job can be charac-
terized according to a required performance level (see 
[35]). For this purpose, each operation is evaluated relative 
to each other, according to five features (manual activities 
of an operation, error costs, degree of standardization, sig-
nificance and errors occurred) to answer the question, how 

high is the required attention level during execution? In ad-
dition the performance curve is differentiated into ranges 
(e.g. different levels of concentration and attentiveness) be-
tween the global turning points (minimum, maximum). 
Thus, for each operation, time periods can be identified 
during which the required attentiveness level corresponds 
to the available attentiveness level (see figure 2). In doing 
this, time period dependent correction factors 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖 can be de-
termined for an operation. The correction factor is equal to 
1, if the required attentiveness level for an operation equals 
the available attentiveness for a time period. The correction 
factor is less than 1, if the available attentiveness level of a 
time period is less than the required attentiveness level. Ac-
cordingly, the over- or under-stressing of a worker is ex-
pressed by the correction factor. This quality-based evalu-
ation is the basis of the proposed flexible job-shop 
scheduling to reduce product-related error costs. In the pec-
FJSP aggregate-objective function, the logistic objectives, 
output lateness, WIP and throughput time, are optimized 
together with the product-related error costs. The resulting 
production plan can be shown in the form of a GANTT di-
agram (see figure 3). A GANTT diagram shows the chron-
ological sequence of the respective job operations of the 
resources (machine, worker and so on). Considering figure 
3, the objective conflict in the considered problem is as fol-
lows: Use the performance level in comparison to a lo-
gistic-optimal scheduling. On the assumption that the oper-
ation 𝑂𝑂2,2 requires a high level of attention, it sensible to 
carry it out when the corresponding worker is at peak per-
formance. From the view point of logistic costs, this may 
not be optimal. 

Figure 1: Performance curve 
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Figure 2: Matching of performance curve and performance 
characterization of jobs/operations 

 
Figure 3: Load and production plan 

The logistic objectives can be derived from a GANTT 
diagram (see figure 4). Output lateness is determined by 
comparing the time when a job is completed with the 
planned completion deadline (which is assumed to be equal 
with the delivery deadline). This involves distinguishing 
between completion which is too early (negative deviation) 
on the one hand, and too late (positive deviation) on the 
other hand. WIP is calculated as the total of job waiting 
times. Further sub-divisions of WIP are: (1) waiting times 
in stock before the processing of a job begins; (2) waiting 
times of precedent operations of a job (3) and waiting times 
in stock of finished products (see figure 3). Therefore, the 
throughput time of a job corresponds to the cumulative 
waiting times and the processing times (including set-up 
times). The quality-based evaluation is calculated for each 
operation. Minimizing the waiting times leads to the mini-
mization of WIP and throughput times, as well as reducing 

negative output lateness of jobs. Minimizing over- and un-
der-stressing is achieved by leveling out over the planning 
horizon concerned. Positive output lateness of jobs is pre-
vented with a constraint, rather than being achieved via the 
objective function. This means that a suitable production 
plan can only be generated if the completion deadlines of 
all the jobs are satisfied. Capacity utilization is not consid-
ered in the pec-FJSP objective function as an objective. The 
machines’ capacity utilization depends on the workload 
due to the jobs and operations considered. The number of 
jobs is predetermined before starting scheduling and there-
fore fixed during the optimization. However, the capacity 
utilization can be varied in the generation of instances. 
Nevertheless, the costs of unused capacity, which results 
from a low capacity utilization, must be considered to iden-
tify the real costs arising from a production plan. The costs 
of a machine’s unused capacity consist of the machine costs 
per period. Total costs of unused capacity can be mini-
mized if machines with higher machine costs per period are 
utilized more than machines with lower machine costs per 
period. 

 
Figure 4: Basis of the logistic objectives 

To estimate the costs arising from a production plan, 
costs for the considered objectives have to be estimated. 
The cost-based evaluation of the waiting times is under-
taken based on the costs of tied-up capital, which are in-
curred during each period [10]. These costs must be identi-
fied after each operation within a job. The costs of tied-up 
capital consist of the interest on the actual manufacturing 
costs incurred for the job up to and including the current 
operation. The manufacturing costs consist of the total ma-
terial costs (as per the parts list), machine costs (machine 
costs per hour), and labor costs (labor costs rates). Before 
the processing of a job begins, the manufacturing costs con-
sequently only consist of the costs of materials. As the 
number of operations that have been completed within a 
job increase, the incurred costs of tied-up capital increase 
as well. As the overrunning of the completion deadline is 
not permitted, the evaluation of positive output lateness of 
jobs is not required (see figure 4). The over- and under-
stressing of an operator is multiplied by an error cost price 
to obtain the error costs of a production plan. The over- and 
under-stressing of an operator can be expressed by a cor-
rection factor. The correction factor can be derived from 
the performance curve (see figure 2). For example, if the 
required attentiveness level for an operation is C, and the 
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operation is scheduled in a period where the performance 
level equals this attentiveness level, the correction factor is 
1. On the other hand, the correction factor is higher than 1, 
if the attentiveness level required for an operation is less 
than the performance level for the corresponding period. 
Consequently, the correction factor is lower than 1, if the 
attentiveness level required for an operation is higher than 
the performance level for the corresponding period. It fol-
lows that the values of the correction factors for over- and 
under-stressing significantly influence the resulting prod-
uct-related error costs of a production plan. Therefore, the 
definition of the values of the correction factors should be 
mapped as a whole. An error cost price can be determined 
by using the additional material (“spoilage”) and time (“re-
work”) requirements per year, related to a time period. The 
total costs of a production plan are calculated based on the 
logistics costs and the error costs. The identified cost pa-
rameters are incorporated into the objective function. The 
following assumptions are made for the pec-FJSP:  

• All jobs, with their associated operations, must be pro-
cessed within the planning horizon 

• The processing of an operation cannot be interrupted 
• The capacity that is utilized by the jobs must not ex-

ceed the available capacity of all the machines/ work-
ing places within the planning horizon 

• The processing sequence for the operations within 
each job, must be adhered to 

• Multiple operations within a manufacturing order must 
not be run in parallel on different machines/ working 
places 

• Processing of an operation may only be carried out on 
a permitted machine/ working place 

• At least one technologically suitable machine must be 
available for each operation 

• Within a single period, only one operation can be pro-
cessed on each machine/ working place 

• Each machine is available in every period within the 
planning horizon 

• The processing time of an operation is identical for 
each permitted machine 

• The correction factor of an operation is known for each 
time period 

4 OPTIMIZATION MODEL 

For an optimization model, all logical restrictions must 
be identified and satisfied, for the given problem. To model 
a flexible job-shop scheduling problem which takes into 
consideration human performance fluctuations, we intro-
duce the following decision variable: the binary decision 
variable 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 equals 1, if operation j of product i is sched-
uled in period t on machine k, and 0 otherwise. Now we can 
formulate the optimization model with respect to indices 
and sets (see table 1), parameters (see table 2) and variables 
(see table 3): 

Table 1: Indices and sets 

i identifier for a product 𝑖𝑖 ∈ {1,2, … , 𝐼𝐼} 
j identifier for an operation 𝑗𝑗 ∈ {1,2, … , 𝐽𝐽} 
k identifier for a machine, work place 𝑘𝑘 ∈ {1,2, … ,𝐾𝐾} 
t identifier for a period 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} 

𝑃𝑃𝐴𝐴𝑖𝑖 set of operations of product i 
𝑆𝑆𝑆𝑆𝑐𝑐𝑖𝑖𝑖𝑖 successor of operation j of product i 

Table 2: Parameters 

𝑑𝑑𝑖𝑖 due date of job  period 
𝑝𝑝𝑝𝑝𝐾𝐾𝑖𝑖𝑖𝑖 product-related error cost € / period 
𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖 correction factor of operation   
𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 Cost rate delivery deviation € / period 
𝑐𝑐𝐼𝐼𝑖𝑖𝑖𝑖 cost rate of storage (inventory) € / period 
𝑐𝑐𝑐𝑐𝑆𝑆𝑖𝑖𝑖𝑖 cost rate of working capital  € / period 
𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 cost rate workload € / period 
𝑘𝑘𝑎𝑎𝑝𝑝𝑖𝑖 usable capacity of machine k  
𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 suitable machine k for operation j of job i  
𝑝𝑝𝑖𝑖𝑖𝑖 processing time  period 
𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖∗  transition time  period 

Table 3: Variables 

𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖  starting time of an operation j of job i 

𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖  ending time of an operation j of job i 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �
1 if an operation j of job i is scheduled in period t 

on machine k 
0 otherwise

 

𝑌𝑌𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �
1  initial state of an operation j of job i   

on machine k in period t
0 otherwise

 

𝑌𝑌𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �
1  final state of an operation j of job i

on machine k in period t
0 otherwise

 

𝑍𝑍 Objective function (minimizing logistic and product-related 
error costs) 
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The formulation of the optimization model is as follows: 

Objective function minimizing Z (1) 

= ���tsij − 1� ⋅ cIij  
J

j=1

I

i=1

  (1.1) 

+���tsij+1 − teij� ⋅ cMij 
J−1

j=1

I

i=1

  (1.2) 

+��(di − teij) ⋅ kbij

J

j=J

I

i=1

  (1.3) 

+�((kapk −��� xijkt) ⋅mksk

J

j=1

I

i=1

T

t=1

K

k=1

)  (1.4) 

+����𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⋅
𝑝𝑝𝑝𝑝𝐾𝐾𝑖𝑖𝑖𝑖
𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇

𝑖𝑖=1

𝐾𝐾

𝑖𝑖=1

𝐽𝐽

𝑖𝑖=1

𝐼𝐼

𝑖𝑖=1

  (1.5) 

 Constraints  

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1  ≤ 𝑌𝑌𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃𝐴𝐴𝑖𝑖 ,𝑘𝑘, 𝑡𝑡 (2) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+1  ≤ 𝑌𝑌𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃𝐴𝐴𝑖𝑖 ,𝑘𝑘, 𝑡𝑡 (3) 

��𝑌𝑌𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
𝑇𝑇

𝑖𝑖=1

𝐾𝐾

𝑖𝑖=1

= 1 ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃𝐴𝐴𝑖𝑖  (4) 

��𝑌𝑌𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
𝑇𝑇

𝑖𝑖=1

= 1
𝐾𝐾

𝑖𝑖=1

 ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃𝐴𝐴𝑖𝑖  (5) 

𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖 = ��𝑌𝑌𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ 𝑡𝑡 
𝑇𝑇

𝑖𝑖=1

𝐾𝐾

𝑖𝑖=1

 ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃𝐴𝐴𝑖𝑖 (6) 

𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖 = ��𝑌𝑌𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ 𝑡𝑡 
𝑇𝑇

𝑖𝑖=1

𝐾𝐾

𝑖𝑖=1

 ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃𝐴𝐴𝑖𝑖 (7) 

�𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑖𝑖�+ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖∗ − 1 ≤ 𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖+1 ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃𝐴𝐴𝑖𝑖 ,𝑠𝑠
∈ 𝑆𝑆𝑆𝑆𝑐𝑐𝑖𝑖𝑖𝑖 (8) 

𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖 + 1 = 𝑝𝑝𝑖𝑖𝑖𝑖  ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃𝐴𝐴𝑖𝑖 (9) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ≤ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃𝐴𝐴𝑖𝑖 ,𝑘𝑘, 𝑡𝑡 (10) 

��𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1 
𝐽𝐽

𝑖𝑖=1

𝐼𝐼

𝑖𝑖=1

 ∀𝑘𝑘, 𝑡𝑡 (11) 

The objective function (1) requires the minimization 
of error and logistic costs. In the first three lines, the costs 
of waiting times before the start of (1.1), between (1.2) and 
after the end of (1.3) the processing of operations of a job 
are minimized. In (1.4) the costs of unused capacity are 
minimized. Equation (1.5) guarantees minimizing error 
costs. Constraints (2) to (11) ensure the correct scheduling 
of the operations. Note, if an operation j of job i is sched-
uled in period t, the binary variable 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1. Thus, if this 
operation is not scheduled in period t-1, the initial state of 
operation j is period t. Therefore, (2) determines the initial 
state and (3) the final state of an operation. Equation (4) 
guarantees that an operation within the planning horizon is 
started only once. Therefore, equation (5) guarantees that 
an operation only ends once within the planning horizon. 
The starting time of an operation is determined by equation 
(6). Thus, equation (7) determines the ending time of an 

operation. Following the process sequence of the opera-
tions in a job is ensured by equation (8), and it prevents any 
overlaps in the scheduling. Equation (9) ensures that the in-
terval between the start and end time of an operation com-
prises as many periods as are required to process that oper-
ation. Equation (10) ensures the selection of a suitable 
machine for an operation. Equation (11) ensures that in 
each period, only one operation for a job can be processed 
on each machine. This prevents any double allocations. 

5 PROPOSED ALGORITHM 

The pec-FJSP is an extension of the FJSP. Therefore, 
the pec-FJSP also belongs to the class of NP-hard prob-
lems. Thus, a heuristic approach is required for solving 
large problems. Here, a memetic algorithm (GA + LS) is 
developed and used for solving the pec-FJSP. The GA at-
tempts to mimic the natural evolutionary process. Starting 
with an initial population, the algorithm executes genetic 
operators to hopefully produce offspring with a higher fit-
ness level. The structure of the MA is as follows and will 
be explained in more detail: 

1. Coding: A solution (production plan) of the pec-FJSP 
is coded as a GANTT diagram. A chromosome con-
tains the production plan information in coded form. 
Each chromosome contains a solution of the pec-FJSP.  

2. Initial population: The generation of the initial popu-
lation takes place based on the latest starting time rule 
and a random component. Note that only suitable so-
lutions are generated.  

3. Fitness evaluation: The pec-FJSP objective function 
is used as the fitness function.  

4. Selection: The n-size tournament selection is used for 
reproduction. 

5. Crossover: The exchange of genetic information of m-
chromosome creates new chromosomes. Infeasible so-
lutions are repaired with repair procedures. 

6. Mutation: The chromosomes undergo further change 
due to random mutation. The mutation takes place due 
to movement of an operation to another machine. This 
happens separately for each chromosome.  

7. Local search: A local search is used for further im-
provement. This involves the fitness function specifi-
cally searching for operations which cause high costs 
and attempting to reduce these costs by changing the 
schedule. 

8. Reinsertion scheme: At the end of the evolutionary 
process, the reinsertion scheme is used to decide which 
chromosomes will be removed from the current popu-
lation and which will be incorporated into the popula-
tion. In this, MA elitist reinsertion is used. 
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9. Stopping criterion: Step 3 to 8 describes the evolu-
tionary process. A run of the evolutionary process is 
called a generation. The evolutionary process is re-
peated until the stopping criterion is reached. Here, it 
is a maximum computing time. 

5.1 CODING 

A chromosome consists of two strings: the operation 
and the machine string. A permutation with repetition is 
used to encode a chromosome, a solution of the pec-FJSP 
[35]. This is particularly suitable for sequencing problems, 
such as the JSP [36]. The machine string includes the ma-
chines allocated to the operations. A gene in the machine 
string describes on which machine an operation is sched-
uled. The operation string contains the sequence of opera-
tions j, within all jobs I (Oij). Only the job index is inte-
grated into the operation string. The job index is repeated 
according to the number of operations within the job. This 
ensures that any permutation of job indices can be inter-
preted as a feasible sequence of operations [37]. In decod-
ing a chromosome, a solution, i.e. a production plan, is al-
ways feasible in respect of the processing sequence of the 
operations within a job.  

For example, job 2 consists of two operations (see fig-
ure 3). Therefore, the job index 2 occurs two times within 
the operation string. The occurrence of the job index pro-
vides information about the operation. Job index 1 appears 
for the second time in the fifth gene of the operation string. 
Consequently, this is the second operation of job 1 (O12). 
Unallocated time domains are depicted by idle time phases 
(𝑏𝑏𝑖𝑖  = 1, … ,𝐵𝐵). All idle time phases have job index 0 and a 
processing time of one period. 

 
Figure 5: Phenotype and genotype decoding 

For decoding a chromosome in a production plan, the 
gene values in the operation string are considered from left 
to right and the corresponding operation or idle time phase, 
is allocated in the production plan for the machine, speci-
fied in the machine string. An operation or idle time phase, 
is always allocated at the earliest possible available period. 

In Fig. 4 the first gene value in the operation string is job 
index 1. This is the first time that job index 1 occurs in the 
operation string. Hence, the corresponding operation is O11, 
which has to be carried out on machine 1. Operation O11 is 
now allocated at the earliest possible available period for 
machine 1 (period 1). The next gene value in the operation 
string is job index 0 and represents the first idle time phase 
B1. B1 is allocated to machine 2 at the earliest possible 
available period (period 1). The idle time phases are neces-
sary to determine a definite start and end period for the op-
erations in the production plan. Without idle time phases, 
the decoding procedure could lead to several possible and 
infeasible production plans.  

5.2 INITIAL POPULATION 

An algorithm was developed for the generation of the 
initial population. The initial population contains only fea-
sible chromosomes. The generation of a feasible chromo-
some is divided into two phases. First, the operations are 
scheduled on the machines. For this purpose, the latest 
starting times (slatei) for each operation is determined 
based on the due date information for the corresponding 
job. Second, the subsequent steps are repeated until all the 
operations are scheduled. The operation with the smallest 
latest possible start time value is selected. Then the earliest 
possible start time (searlyi ) for job i, relative to the selected 
operation, is determined. After that, a suitable machine for 
the particular operation is selected randomly – note that the 
unused machine’s capacity must be equal to or greater than 
the capacity requirements for the specific operation. Now, 
all the potential start times for the selected machine be-
tween slatei and searlyi, are determined. If there are several 
possible start times, a selection is made randomly. If no po-
tential start time can be found, all other permissible ma-
chines are considered in turn. If this also fails, the initiali-
zation is stopped, the production plan is deleted, and the 
initialization is restarted. After scheduling all operations, 
idle-time phases are assigned for the individual machines 
which have not yet been scheduled. The initialization is re-
peated until a specified population size μ is achieved. How-
ever, a chromosome can only occur once in the population. 
That means that each chromosome must have a different 
fitness level. 

5.3 FITNESS EVALUATION 

The fitness function calculates the respective fitness 
level of each chromosome in the population. The pec-FJSP 
objective function is used as the fitness function. To mini-
mize error and logistics costs, the MA searches for solu-
tions with a low fitness value. A low fitness value equates 
to a high fitness level. Within the evolutionary process in-
feasible solutions may arise (see Crossover) and are penal-
ized by a “big M” (a very high value of 1,000,000,000). 
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5.4 SELECTION 

Some chromosomes must be selected for the evolu-
tionary process. Chromosomes are first randomly selected 
for the mating pool by tournament selection. This involves 
ξ chromosomes in the tournament and the chromosome 
with the best fitness being copied to the mating pool. This 
process is carried out μ-times. Chromosomes can occur 
several times in the mating pool. After that, two chromo-
somes are randomly selected from the mating pool for the 
evolutionary process.  

5.5 CROSSOVER 

To produce offspring, the selected chromosomes are 
crossed with each other. For this purpose, the precedence 
preserving order-based crossover (POX) procedure is used 
for the operation string, and the one-point crossover proce-
dure is used for the machine string. The POX procedure 
guarantees with the encoding scheme used, the correct 
number of operations in the operation string of the off-
spring. The crossover may nevertheless produce infeasible 
solutions. The following impermissibility’s may arise: 

• Breaching the machine capacity (the total of the pro-
cessing times and idle time phases on the machine is 
greater or less than T) 

• Over running the completion deadline 
• Deviation from the sequence in which the operations 

should be processed 

If an infeasible solution is generated, two repair proce-
dures are used to repair the chromosomes. The repair pro-
cedures are carried out one after the other. If a chromosome 
cannot be fully repaired, the described crossover proce-
dures are carried out again. If no permissible chromosomes 
could be produced after running a specified number of 
crossover procedures (Limit_CO), the evolutionary pro-
cess is continued using an impermissible chromosome. The 
aim of the first repair procedure is to rectify any breach of 
machine capacity. To do this, operations are moved from 
the most heavily over-loaded machine to the most lightly 
loaded machine. Changes are made to the specific genes 
which have caused the impermissibility. The aim of the 
second repair procedure is to rectify the other two imper-
missibilities. To do this, the machine assignment is fixed 
and an attempt is made to interchange the sequence of op-
erations and idle time phases within the operation string in 
such a way that suitable chromosomes are produced. Both 
repair procedures include a fixed number of repair attempts 
(Limit_shiftingKap and Limit_repair). If the number of re-
pair attempts is exceeded, the crossover procedures recom-
mence. 

5.6 MUTATION 

Chromosomes undergo a further change due to ran-
dom mutation within the evolutionary process. The muta-

tion rate (Mutate_rate) decides whether a chromosome mu-
tates. The mutation is based on the random movement of 
an operation to another machine. Therefore, during muta-
tion, a machine is selected first. After that, the largest suit-
able continuous range of idle time phases on this machine 
is identified. Then another machine is specified, from 
which an operation can be moved. One operation is se-
lected at random from all the operations which are assigned 
to this machine. If these preconditions are not fulfilled, an-
other suitable machine is considered, or once all the suita-
ble machines have been considered, another operation 
which has to be moved is selected. An operation may only 
be moved once. A mutation counter counts the attempts and 
stops the mutation after a randomly generated number of 
attempts. 

5.7 LOCAL SEARCH 

The local search procedure improves the fitness of the 
generated chromosomes. The basis of the local search pro-
cedure is the determination of the largest cause of costs 
within a chromosome, in the form of a critical operation 
pair. The critical operation pair can be determined in the 
decoded solution, by the corresponding start and end times 
and the cost rates. The highest costs may be caused by the 
costs of tied-up capital, due to long waiting times between 
the critical operation pair or, between the completion dead-
line and the last operation within a job. Furthermore, pen-
alty costs for impermissibilities (see Crossover) may also 
cause the highest level of costs. If the critical operation pair 
is detected, the corresponding time domain in which the 
critical operation pair is scheduled, is completely removed 
from the production plan. An attempt is made to reschedule 
the operations removed so that the highest costs no longer 
arise and the chromosome’s fitness is consequently im-
proved. The local search procedure neighborhood is there-
fore defined as the number of all permissible allocations of 
the removed operations in the considered time domain. If 
no improvement can be achieved after a specified number 
of attempts (Limit_noAssign), the local search is continued 
with the critical operation pair responsible for the next 
highest level of costs. Furthermore, there is a limit on the 
number of attempts made which do not produce any im-
provement (Limit_noimprove), before the next chromo-
some is considered. The local search ends once a specified 
number of neighbors or chromosomes have been reached 
(Limit_searchCounter). 

6 VALIDATION 

The goal of the following evaluation is to validate the 
pec-FJSP. To do this, the influence of product-related error 
on the total costs of a production plan is tested. First, the 
performance of the developed MA is evaluated. Since the 
MA’s practical applicability has a higher priority than its 
performance in computing the best possible solution, a 
short computing time is necessary. The MA should be able 
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to solve practical problem sizes with an adequate perfor-
mance. Thus, it is not the purpose to reach or exceed the 
performance of existing state-of-the-art heuristic ap-
proaches for solving the conventional FJSP. 

6.1 EXPERIMENTAL SET UP 

The literature only includes examples from conven-
tional FJSP. These are not applicable to the pec-FJSP. 
Therefore, it is necessary to generate examples for the pec-
FJSP. Six examples are generated for validating the pec-
FJSP and the MA. The set-up of the test examples TI is 
shown in table 4.  

Table 4: Set-up of generated instances 

Name # of  
jobs 

# of ma-
chines 

# of op-
erations 

# of peri-
ods 

Utiliza-
tion (%) 

TI01 2 3 3 32 26.0 

TI02 4 3 3 32 52.1 

TI03 6 6 3 32 38.5 

TI04 8 6 3 32 49.4 

TI05 10 6 3 32 60.4 

TI06 12 6 3 32 72.3 

The examples are based on the assumptions of job-
shop production, in which the jobs must undergo three dif-
ferent process steps on three different types of machines. 
This produces a constant number of three operations for all 
instances. The situations differ in terms of the number of 
jobs, the number of machines that are available and the ca-
pacity utilization. The capacity utilization U in each in-
stance is determined by the equation (12).  

𝑈𝑈 =
∑ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇 ∙ 𝐾𝐾
 (12) 

The machines are assigned to one of three machine 
types; each of them are able to process one specific opera-
tion. Table 5 shows the assignment of the machines to the 
machine types and the operations. 

Table 5: Assignment of machines k to machine types and opera-
tions 

  
Machine  
type 1 

Machine  
type 2 

Machine 
 type 3 

Operation 1 𝑘𝑘1; 𝑘𝑘2   
Operation 2  𝑘𝑘3; 𝑘𝑘4  
Operation 3   𝑘𝑘5; 𝑘𝑘6 

Table 6 shows the assignment of the amplifier factor 
to the jobs, considering performance curve and attentive-
ness levels required for the operations. To characterize the 
attentiveness level required by the operations, three levels 
(A, B, C) were adopted. Attentiveness level A needs the 
highest attention, compared to the lowest attention by level 

C. Note if an instance exists of more than one job, the se-
lected jobs follow from one to twelve, until the number of 
jobs considered in the instance is reached. 

Table 6: Assignment of amplifier factors to jobs and attentiveness 
characterization of operations 

  
ampli-

fier 
attentiveness level 

operation 1 operation 2 operation 3 
Job 1 1.00 A B C 

Job 2 1.00 A B C 

Job 3 0.90 A C B 

Job 4 0.90 A C B 

Job 5 0.80 B A C 

Job 6 0.80 B A C 

Job 7 0.70 B C A 

Job 8 0.70 B C A 

Job 9 0.60 C A B 

Job 10 0.60 C A B 

Job11 0.50 C B A 

Job12 0.50 C B A 

The performance curve used is shaped according to 
POTTHAST [27]. However, no distinction is made between 
morning and evening types. The performance curve is 
standardized relative to job 1 to job 12. The corresponding 
attentiveness levels, in relation to the time periods, are 
shown in table 7. This information can be used to derive 
the time period-related correction factors for the opera-
tions. 

Table 7: Period-related attentiveness levels 

Attentiveness 
level Periods 

A 3-8 22-25   

B 1-2 9-10 18-21 26-29 

C 11-17 30-32   

The planning horizon is based on a single-shift model, 
using a period length of 15 minutes and a shift length of 
eight hours (one operational calendar day with 32 periods). 
The job processing times (see table 8) and logistic costs, 
are based on a normal distribution of random numbers. The 
mean values were used for generating the normal distribu-
tion of random numbers and are based on empirically as-
certained values in the mechanical engineering sector. The 
following assumptions were used for the determination of 
mean product-related error costs: the company studied can 
produce 400 different products, has annual revenue of 35 
Mio. € and incurs product-related error costs of 15% of the 
annual revenue. The average processing time of an opera-
tion is one hour (4 periods). All jobs must be completed by 
period 32.  
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Table 8: Processing times of operations 

  Operation 1 Operation 2 Operation 3 

Job 1 5 5 4 

Job 2 3 3 5 

Job 3 3 3 5 

Job 4 5 4 5 

Job 5 4 3 3 

Job 6 6 4 4 

Job 7 3 4 4 

Job 8 5 2 3 

Job 9 2 5 3 

Job 10 3 5 3 

Job11 4 4 2 

Job12 4 4 5 

Table 9 includes the MA parameters, which were used. 
The parameters were applied and statistically analyzed, so 
that the combination of values produced the best results. 

Table 9: Used MA parameters 

Parameters Description Value 

TimeDuration Time duration in minutes 15 

PopSize (μ) Population size 50 

mue (ξ) 
Number of randomly chosen 
chromosomes for the mating 
pool (ξ) 

2 

Limit_CO Number of Crossover tests 10 

Limit_shiftingKap Number of Repair tests  
(procedure 1) 20 

Limit_repair Number of Repair tests  
(procedure 2) 20 

Mutate_rate Mutation probability 0.6 

Limit_tabuCounter Number of considered chro-
mosomes at LS 2 

Limit_noAssign 
Number of allocation at-
tempts for critical operation 
pair at LS 

10 

Limit_noImprove 
Number of improving at-
tempts per chromosome at 
LS 

2 

 

6.2 COMPUTATIONAL RESULTS & COMPARISON 

All instances were carried out on a computer with an 
Intel Core i5 2.5 GHz processor and 4 GB RAM. Note that 
the problem considered has not been addressed in literature. 
Therefore, no approach exists for solving the pec-FJSP and 
the MA developed could not be validated. Thus, all the in-
stances were first solved using a commercial solver which 
can produce optimal solutions (reference solutions). This 
modelled the pec-FJSP in the GAMS modeling language 
and solved it using the CPLEX version 12.6 solver.  

Each instance is solved once using the CPLEX solver. 
Solving is stopped after reaching a maximum computing 
time of 1 hour. In table 10, column CP shows the best so-
lutions found by CPLEX for all the instances. Column CP 
time, shows the computing time required to find the best 
solution. During the remaining computing time, CPLEX 
did not find a better solution. CPLEX found the optimal 
solution for all instances. Thus, the solution is marked with 
an asterisk (see table 10). Column dev LB, shows the per-
centage deviation from the lower boundary found by 
CPLEX. 

The MA is implemented in JAVA. Ten runs with a 
computing time of 5 minutes were executed for each in-
stance. The MA best, column in table 10 shows the best 
solution found by ten runs. Column MA avg, shows the av-
erage solution which is calculated from the best solution 
found in each of the ten runs. Columns LB_dev shows the 
percentage deviation between the best solution generated 
by the MA and the best solution found by CPLEX, or be-
tween the average MA solution and the solution produced 
by CPLEX. 

For all instances, the MA did not find the optimal so-
lution. Therefore, the MA is unable to find the optimal so-
lution. Across all instances, the average deviation is 6.08%. 
Thus, the MA is capable of solving the pec-FJSP with an 
adequate solution quality, within a short computing time, 
for a practical application.  

Table 10: Comparison of CPLEX and MA 

Name CP 
CP 

time 
(sec.) 

LB 
dev. 
(%) 

MA 
best 

CP 
dev. 
(%) 

MA 
avg. 

CP 
dev. 
(%) 

TI01 5281* 1 0.00 5314 0.73 5367 2.61 

TI02 11697* 2 0.00 11781 0.82 11869 2.45 

TI03 12491* 10 0.00 12937 3.45 13116 4.77 

TI04 20463* 32 0.00 21122 3.22 21825 6.25 

TI05 29221* 373 0.00 30723 4.89 31780 8.06 

TI06 39069* 811 0.00 40762 4.16 42262 7.56 

      avg. 6.08 

Figure 6 shows the convergence curve for the best and 
the average solution generated by the MA based on in-
stance TI04. 
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Figure 6: MA convergence curve Run 4 of TI04 

Considering figure 5, the objective function value de-
creases very sharply within the first 50 generations. Within 
the next generations, the objective function value decreases 
only slightly. Only the first 375 generations are shown, be-
cause the subsequent generations produced no change in 
the objective function value. The computing time for the 
first 375 generation was 350 seconds. It should be noted 
that the MA can generate good solutions within a small 
number of generations. 

6.3 FURTHER ANALYSIS 

To validate the influence of considering product-re-
lated error costs in production planning, instance TI04 was 
solved a further ten times, only taking account of logistic 
costs as an objective function. The under- and over stress-
ing profile that was produced was recorded separately, to 
determine machine-related quality factors (see table 11 ff.). 
A machine-related quality factor describes the average cor-
rection factor used for those operations, which are sched-
uled on an individual machine. Note that the correction fac-
tor depends on the time period in which an operation is 
scheduled. Therefore, the machine-related quality factor is 
higher when the operational worker is less overloaded (un-
derloaded) – overloading leads to higher product-related 
error costs. The results of both solutions for example TI04 
(with and without consideration of the product-related error 
costs) are shown in table 12.  

Table 11: Results of instance TI04 with and without considera-
tion of product-related error costs – objective value 

 without product-related 
error-costs 

with product-related  
error-costs 

Run Error 
costs 

Lo-
gistic 
costs 

Total 
costs 

Error 
costs 

Lo-
gistic 
costs 

Total 
costs 

1 115 21139 21254 112 21857 21969 

2 114 21229 21343 112 21446 21558 

3 113 20531 20645 110 21405 21515 

4 112 20887 20999 110 21459 21569 

5 112 20446 20558 112 21168 21280 

6 114 21295 21409 112 21857 21969 

7 113 21855 21968 109 21574 21683 

8 113 21737 21850 110 21986 22096 

9 114 20749 20863 109 21013 21122 

10 114 22028 22142 113 21588 21701 

avg. 113,4 21189 21144 110,9 21535 21646 
dev. 
(%) 2,25 -1,61 -2,32    

The consideration of product-related error costs within 
the objective function leads to higher logistic and total 
costs. While the product-related error costs decrease by 
2.25%, on the other hand, the logistic costs increase by 
1.61%. However, the absolute value is deflected. Further-
more, the achievable cost-saving potential depends on the 
product-related error costs and logistic cost rates, which are 
used. Specifically, it depends on the relative cost ratio of 
product-related error costs to logistic costs. Each cost rate 
must be individually determined for each specific applica-
tion. As stated above, an attempt has been made to make 
the costs used in the validation as realistic as possible. The 
correction factor assumed can also be adjusted. Finally, the 
pec-FJSP can lead to a reduction in the costs which arise in 
relation to a production plan.  

Table 12: Results of instance TI04 with and without considera-
tion of product-related error costs – quality factor 

quality factor – with product-related error-costs 

Run k1 k2 k3 k4 k5 k6 avg. 

1 0.98 0.99 1.02 1.04 1.02 1.02 1.01 

2 0.98 0.97 1.01 1.05 1.02 1.01 1.01 

3 0.97 0.96 1.01 1.00 1.04 1.02 1.00 

4 0.95 0.99 1.00 1.03 1.06 1.00 1.00 

5 1.01 0.91 1.01 1.01 1.04 1.05 1.00 

6 0.97 0.96 1.01 1.01 1.00 1.04 0.99 

7 0.94 0.99 1.05 1.03 1.01 1.04 1.01 

8 0.95 0.96 0.97 1.04 1.06 1.04 1.00 

9 1.00 0.97 0.97 1.04 1.05 1.03 1.01 

10 0.96 0.97 1.07 1.02 1.00 1.06 1.01 

quality factor – without product-related error costs 

1 0.90 0.98 1.02 1.01 1.01 1.01 0.98 

2 0.94 1.01 1.06 0.97 1.07 1.00 1.00 

3 0.96 0.99 1.03 1.01 1.02 1.00 1.00 

4 1.00 0.96 1.04 1.01 1.05 0.99 1.00 

5 0.95 0.99 1.00 1.01 1.00 1.06 1.00 

6 0.97 0.95 0.97 1.07 1.00 1.01 0.99 

7 0.95 0.95 1.02 0.99 1.03 1.02 0.99 

8 1.09 0.96 1.00 1.04 1.01 1.04 1.02 

9 0.96 0.97 1.00 1.03 1.02 1.04 1.00 

10 0.99 0.95 1.03 1.00 1.02 1.03 1.00 
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Comparing the machine-related quality optimization fac-
tors, with and without the consideration of product-related error 
costs, it can be stated that the average quality factor over all 
runs is higher if product-related error-costs are included in the 
objective function – the higher the value of the quality factor, 
the lower the overload of the worker (see table 13). Accord-
ingly, the MA schedules complex operations in periods in 
which the worker is at peak performance.  

Table 13: Comparison of the waiting times and throughput time 

 
without product-related 

error-costs 
(Run 8 of TI04) 

with product-related  
error-costs  

(Run 8 of TI04) 

Job waiting 
time 

throughput 
time 

waiting 
time 

throughput 
time 

1 6 20 0 14 

2 0 11 7 18 

3 8 19 2 13 

4 5 21 4 18 

5 7 17 14 24 

6 3 17 9 23 

7 3 14 3 14 

8 6 16 3 13 

total 38 135 42 137 

dev. (%)   10..52 1..49 

As shown in Table 13, the consideration of product-
related error costs leads to an increase in the waiting times 
between the operations, and consequently also to an in-
crease in the throughput time of the jobs. A comparison of 
the scenarios shows that the throughput times increase by 
2 periods, when product-related error costs are considered. 
The reason is the fitting of the production plan to the as-
sumed shape of the performance curve. Therefore, the as-
sumed shape of the performance curve is significant.  

7 SUMMARY AND CONCLUSION 

In this article, the FJSP is extended by considering product-
related error costs (pec-FJSP) due to over stressing of opera-
tional workers. The objective of the extended FJSP is to mini-
mize error and logistic costs simultaneously. Logistic costs are 
based on the logistical objectives; work in process and through-
put time. A memetic algorithm is used to solve the pec-FJSP. 
The evolutionary process is supplemented with a local search 
procedure and repair mechanisms. The MA is validated with 
instances which had been generated against those generated by 
a commercial branch-and-cut solver.  

The MA achieved good results while using less compu-
ting time. Thus, the MA could be a suitable heuristic for ap-
plying the pec-FJSP in practice. The MA developed provides 
an inexpensive means for even small and medium-sized com-
panies to exploit the existing cost-saving potential.  

In further research, the analysis of the pec-FJSP should 
focus on the general influence factors of the problem stated 
above. Expressed differently: What are the cost drivers in 
FJSP considering product-related error costs? First steps 
are the relative cost rates of product-related error costs and 
logistic costs, the form of the performance curve, the stand-
ard deviation of the complexity of the products which must 
be produced and utilization.  
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