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A method is introduced with which continuous random variables
can be represented and linked with one another. The distribution
functions of the random variables are approximated using a Finite
Element approach in a finite interval [tmin; tmax]. As an example,
two stochastically independent random variables are added by nu-
merical computation of the convolution integral of their probability
density functions.

Es wird ein Verfahren vorgestellt, mit dem stetige Zufallsgrößen
rechnerunterstützt dargestellt und miteinander verknüpft werden
können. Die Verteilungsfunktionen der Zufallsgrößen werden mit
einem Finite-Elemente-Ansatz in einem endlichen Intervall [tmin; tmax]
approximiert. Die Addition zweier Zufallsgrößen wird durch nu-
merische Berechnung des Faltungsintegrals durchgeführt.

Introduction

Increasing requirements on accuracy mean that it is often no longer sufficient to map
technical systems by means of deterministic models. Computer-aided methods for solv-
ing stochastic models will therefore become more important in the future. The statistical
precision of the widely-used Monte Carlo Method is often very low [4]. On the other
hand, the analytical approach may fail due to limited computability, especially when
random variables are described by means of complicated analytical functions. Although
combining algorithms are known for some analytical functions [8], freedom in modelling
is restricted by parameterization.

The method introduced in [3] is developed in order to represent continuous random
variables and to link them with one another. The distribution functions are approxi-
mated using the Finite Elements Method. The combining algorithms are based on the
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numerical computation of convolution integrals. A detailled description of different com-
bining algorithms, eg. for sums, differences, products and quotients, can be found in
[6].

For instance, the waiting and service times in a material flow system are considered,
and the sum of these gives the throughput time. The random variables are approximated
in the interval [tmin; tmax], with tmin ≥ 0. Other areas of application might include man-
ufacturing tolerances or strengths of machine elements as well as reliabilities of technical
systems. At the outset there will be an explanation of approximating the distribution
function with the Finite Element Method, and this is followed by an examination of
the errors. After this the addition of two independent stochastic variables will be dealt
with as an example for combinations. This is followed by a consideration of the required
memory capacity and computing time. In conclusion the results will be summarized and
discussed.

Representation of stochastic variables

Continuous random variables are characterized by their density or distribution functions,
with one of these two functions being sufficient to uniquely describe a random variable.
To achieve a flexible, computer-oriented presentation of random variables, these functions
have to undergo discretization. It is then intended that the discretized distribution
or density function be used among other functions for numerically calculating random
numbers for any desired random distributions and combinations of random variables.

Finite Element approach

Discretization of the distribution function of a random variable is conducted using the
Finite Element Method, which has been successfully employed in other fields [2]. In
this method the distribution function is approximated by piecewise defined quadratic
approximation functions. By adapting elementation to the course of the function, the
quantity of data can be kept small despite a high accuracy of approximation. As the
function is defined for all intermediate values and the associated inverse function is nu-
merically easy to form, the Finite Element Method is outstandingly suited for generating
random numbers for the distribution being considered.

The three parameters of the quadratic approximation functions are defined by the
values of the function in the two corner nodes and that in the mid-side node. In contrast
to the general isoparametric second order approximation functions, in the meshes used
here, the mid-side nodes are located precisely in the exact centre between the two corner
nodes. The position of the mid-side node is therefore specified by the two corner nodes.
Consequently, for N elements the distribution can be represented by a 3 · (N +1) matrix
(see Table 1).

The range of values for distribution functions is limited by definition to the interval
[0; 1]. The approximation is valid for arguments within the interval [tmin; tmax]. Outside
of this F (t ≤ tmin) = 0 and F (t ≥ tmax) = 1 apply. A distribution function for which
the number of arguments is not limited is restricted by an upper and lower boundary
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Table 1: The 3 · (N + 1)-matrix for the Finite Element approximation of a distribution

node function values function values
coordinates corner nodes mid-side nodes

t0 = tmin F (t0) = 0 F ( t0+t1
2 )

t1 F (t1) F ( t1+t2
2 )

t2 F (t2) F ( t2+t3
2 )

...
...

...

tN−1 F (tN−1) F ( tN−1+tN
2 )

tN = tmax F (tN ) = 1 1

in such a way that the resulting error of the approximation remains sufficiently small.
Infinite corner elements provide a way of avoiding this restriction; however, in technical
systems only random variables with a finite definition interval occur. As this examples
deals with the distribution of times, only arguments with t ≥ 0 are meaningful.

Figure 1 shows the approximation of the distribution function for a Gaussian distri-
bution with 15 elements on the left. The expected value, µ, is 100 and the standard
deviation, σ, is equal to 15. The corner nodes of the elementation are indicated by
vertical black lines, the lines of the mid-side nodes are dotted. The different element
widths ti+1 − ti can be clearly recognized. The right-hand side of Figure 1 shows the
density function of the same approximation. As the density function is a derivation of
the distribution function, the approximation functions of the density function are linear.
Discontinuities in the corner nodes (continuous lines) may occur in the FE approach
selected.

Figure 1: Finite Element approximation of a Gaussian distribution. Probability distri-
bution function (left) and probability density function (right).

The quality of the approximation is influenced by three factors. The first factor
is the number of elements. As the number of elements, N , increases, more precise
mapping becomes possible while, at the same time, the quantity of data required for the
approximation increases. The second factor is the computing input required to adapt
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the elementation to the course of the function. This mesh optimization is dealt with in
the following section. The last factor of influence is the approximation criterion used for
determining the function values for the corner and mid-side nodes. This is dealt with in
Section .

Mesh optimization

A decisive factor in reducing the computing input and the memory is optimization of
the FE mesh. In this way, despite the high accuracy of approximation, the quantity of
data and hence also the computing input for combinations can be kept small. There are
established algorithms in the FEM for mesh generation and optimization. In adaptive
networking [9], the FE program examines the results created with a given mesh. At all
the sites where these results are questionable according to predefined criteria, the mesh is
refined interactively until an acceptable result exists. The mesh improvements may take
place via a finer division of the mesh or by means of higher-value elements. However,
the majority of the procedures presented in recent years refer to mesh refinement.

One possibility of mesh refinement would therefore be to simply subdivide elements
of insufficient approximation quality into several elements. The approximation quality
could then be redefined and the mesh refined iteratively until a sufficiently good result
has been achieved.

One further way of obtaining effective meshes with an acceptable computing input
is the concept of hierarchical networks. The advantage lies in the fact that the entire
structure does not have to be reanalysed, but instead the information from the original
coarse mesh can be used for the finer mesh sections.

The approach used here first considers one-dimensional random variables. Function
values of a random distribution function are assigned to every value within a permissible
interval. As a result, the FE mesh extends in only one dimension. This makes a very
high degree of freedom possible in mesh generation. The idea underlying the following
mesh optimization consists of predefining an upper limit for the deviation between the
distribution function and its approximation which is valid for all elements. Here either
the number of the elements may be constant or a maximum total error is defined, which is
obtained with a minimum number of elements. An algorithm for the mesh optimization
of analytically presentable distribution functions is now presented in which the number
of elements is constant. This is followed by an explanation of how this algorithm can be
applied to those functions that are not known analytically but pointwise.

Analytical functions

In order to consider different random variables in a uniform manner, it is first necessary
to approximate analytical distribution functions of random variables by means of FE
distribution functions.

As already described, the error has to be equally large for all elements. We first
consider an element with the corner nodes to and tu and a mid-side node of tm = to+tu

2 .
To estimate the error in approximation, the density function is developed into a Taylor
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series around the mid-side node:

f(t) = f(tm) +
[
df

dt

]
tm

(t− tm) +
1
2

[
d2f

dt2

]
tm

(t− tm)2 + . . . (1)

The approximation functions of the FE distribution function are parabolic. Conse-
quently, the approximation functions of the density function are linear. The constant
and linear term of the Taylor series is therefore contained in the approximation. Conse-
quently, the error e(t) is:

e(t) =
1
2

[
d2f

dt2

]
tm

(t− tm)2 + . . . (2)

with all higher Terms of the Taylor expansion being ignored. The quadratic term of
the Taylor expansion is greatest at the corner nodes. The maximum error emax(t) is
therefore:

emax(t) = |e(tu)| = |e(to)| =
1
2

∣∣∣∣∣
[
d2f

dt2

]
tm

∣∣∣∣∣
(

L

2

)2

(3)

L = |to − tu| is the length of the element being considered. Equation (3) can be
transformed to:

√
8 · emax =

√√√√∣∣∣∣∣
[
d2f

dt2

]
tm

∣∣∣∣∣ · L (4)

Let emax now be the permissible upper limit of the error, which is identical for all
elements. Then

√
8 · emax is equally large for all elements. The following then applies:

k =
√

8 · emax =

√√√√∣∣∣∣∣
[
d2f

dt2

]
tm

∣∣∣∣∣ · L = const (5)

However, the mid-side node tm of the element is not known a priori. The root term in
the position tm in (5) is therefore approximated using the arithmetic mean of this term
over the entire element [tu; to].√√√√∣∣∣∣∣

[
d2f

dt2

]
tm

∣∣∣∣∣ ≈
√∣∣∣∣[d2f

dt2

]∣∣∣∣ = 1
L
·

to∫
tu

√∣∣∣∣[d2f

dt2

]∣∣∣∣ dt (6)

If this approximation is inserted into (5), it follows that:

k =
to∫

tu

√∣∣∣∣[d2f

dt2

]∣∣∣∣ dt = const (7)

Let the antiderivative of the integral in equation (7) be δf (t):
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δf (t) =
t∫

tmin

√∣∣∣∣[d2f

dξ2

]∣∣∣∣ dξ (8)

It then follows that:

k = δf (to)− δf (tu) = const (9)

The function δf (t) increases monotonously and can be interpreted as the accumulated
error of the approximation. In Figure 2 δf (t) is plotted for the Gaussian distribution,
which has already served as an example in Section . The ordinate is divided into N = 15
equidistant sections of height k. Assigning the abscissae yields the corner nodes of the
approximation. (The corner nodes may be compared with those of Figure 1.)

Figure 2: Error function δf (t) for a Gaussian distribution with N = 15 elements

If Equation (9) is summed for all N elements, this yields:

N∑
i=1

[δf (to,i)− δf (tu,i)] = N · k (10)

The upper corner node of an element is the same as the lower corner node of the
following element. Hence it follows that to,i = tu,i+1 and δf (to,i) − δf (tu,i+1) = 0.
Therefore all of the corner nodes in the sum in Equation (10) are eliminated apart from
the first and last. It follows that:

δf (tmax)− δf (tmin) = N · k (11)

Here δf (tmin) = 0. The constant k can now be calculated:

k =
δf (tmax)

N
(12)

The lower corner node of the first element and the upper corner node of the last
element are defined as t0 = tu,1 = tmin und tN = to,N = tmax by the interval [tmin; tmax].
From all the other corner nodes it is known that the difference of their function values
δf (to,i)−δf (tu,i) is constant. As the function δf (t) rises continuously and monotonously,
the corner nodes can be calculated with the aid of the inverse function δ−1

f :

ti = to,i = tu,i+1 = δ−1
f (i · k) (13)
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Where i ∈ [0;N ]. Owing to the approximations used and the restrictive assumptions
this mesh does not represent an optimum but it is very good and can be set up in
relatively little time without iterations.

Functions identified by points

If the distribution network is to be generated for a random variable that is the result
of combining other random variables, then in general no analytical expression for the
distribution is known. However, the function value can be calculated at any desired
position. A discrete frequency distribution is also obtained for random variables mea-
sured in practice. In the case of such functions, the method just described has to be
adapted because the two-fold derivation of the density function cannot be determined
analytically. If the function value is known for a sufficient number of equidistant points
ti ∈ [0;M ], it is possible to perform a numerical two-fold derivation [1]. Asymmetrical
differential quotients are used for the corner points (t0, tM ) and symmetrical ones for
the remaining points.

∆2f(t)
(∆t)2

∣∣∣∣∣
t0

=
2 · f(t0)− 5 · f(t1) + 4 · f(t2)− f(t3)

(∆t)2
(14)

∆2f(t)
(∆t)2

∣∣∣∣∣
ti

=
f(ti−1)− 2 · f(ti) + f(ti+1)

(∆t)2
(15)

∆2f(t)
(∆t)2

∣∣∣∣∣
tM

=
2 · f(tM )− 5 · f(tM−1) + 4 · f(tM−2)− f(tM−3)

(∆t)2
(16)

Subsequent integration of the values over the roots yields the error function δf (t).
The trapezoidal formula is used for numerically calculating the integral of the individual
sections. The accumulated error function δf from (8) is then calculated as follows:

δf (t0) = 0 (17)

δf (ti) = δf (ti−1) +
∆t

2


√√√√∣∣∣∣∣∆2f(t)

(∆t)2

∣∣∣∣
ti−1

∣∣∣∣∣+
√√√√∣∣∣∣∣∆2f(t)

(∆t)2

∣∣∣∣
ti

∣∣∣∣∣
 (18)

If instead of the density function only the distribution function is known, the second
order quotient of differences from the density function in (18) has to be substituted by
the third order quotient of differences for the distribution function. Instead of equations
(14) to (16) the symmetrical and asymmetrical third order quotients of differences are
then calculated according to [1].

After the pointwise calculation of the error function, δf (t) is interpolated linearly in
the gaps. The inverse function δ−1

f (t) can then be formed. The mesh can be derived
from this according to ((12) and (13).
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Approximation criterion

If the node coordinates are defined, the function values of the corner and mid-side nodes
have to be selected so that the approximation is as accurate as possible. The method of
least squares is normally used for this, which minimizes the integral over the square of
the error e2:

etot =
tmax∫

tmin

e2dt → min! (19)

The 2 · N − 1 unknown function values can be determined from (19). However, for
this purpose a linear equation system with 2 · N − 1 unknowns has to be solved, the
coefficients of which are integrals over the definition interval [tmin; tmax] that have to be
calculated by means of a suitable numerical integration.

In order to avoid this computing input, a collocation method for determining the values
of the node function was used initially. Here the deviation between the approximation
and the function to be transformed is minimized at the nodes.

As the number of degrees of freedom in this FE approach is equal to the number of
nodes, the collocation process imposes an exact agreement between the function and its
approximation in the nodal point. The node function values are thus simply given from
the values of the function to be approximated at the nodes. However, in the regions
between the nodes it is in principle possible for deviations of any size to occur. In
particular, it is possible that the course of the FE approximation within an element may
not be monotonous. The node function values determined by the collocation process
may therefore have to be altered again so that the monotony restriction is observed. If
the parabola determined by the three nodes of an element has an extremum within the
element, the function value of the mid-side node has to be varied in such a way that the
vertex of the parabola coincides with a corner node. However, with good elementation
this case occurs very rarely, and the error resulting from this is small.

In the collocation process the mean square error is larger than in the least squares
method, but the quality of the approximation can be improved significantly more easily
by raising the number of elements.

Error examination

The quality of the approximation depends on the number of elements. A Gaussian dis-
tribution was approximated with various numbers of elements, the mesh optimization
described above was used for this. The result is shown in Figure 3. The mean quadratic
deviation e2 between the FE approximation and the exact distribution function of the
Gaussian distribution decreases continuously as the number of elements increases. How-
ever, the number of elements should not be too great due to the greater computing input
required. The numerical errors also increase with the number of elements. As with every
model, the following principle applies here: as good as necessary, as little as possible. An
approximation suitable for most applications can be achieved with as few as 20 elements.
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doi:10.2195/LJ Not Ref e Plehn 072005

Figure 3: Mean quadratic error e2 over the number of elements N

Addition of random variables

Let the two independent random variables for a material flow system be service time,
t1, and waiting time, t2, with the distribution functions of F1(t1) and F2(t2) and density
functions of f1(t1) und f2(t2). The sum

t = t1 + t2 (20)

corresponds to the throughput time, also called cycle time or sojourn time for the
said material flow system. Let the density function of the throughput time be h(t).
According to [8] the density function of a sum of independent random variables can be
calculated as the convolution of the addends density functions f1(t1) and f2(t2):

h(t) = f1(t1) ∗ f2(t2) =
∞∫

−∞

f1(τ) · f2(t− τ)dτ (21)

The distribution function H(t) satisfies the equation:

H(t) =
∞∫

−∞

f1(τ) · F2(t− τ)dτ =
∞∫

−∞

d

dτ
F1(τ) · F2(t− τ)dτ (22)

The convolution integral is computed pointwise. The structure of the FE approxima-
tion is exploited for this purpose to reduce the computing time. The mesh of the result
is adapted as described in Section .

The integrals for the calculation of differences, products and quotients [5, 7] are listed
in Table 2. A detailed description of these and more combining algorithms can be found
in [6].

Pointwise calculation of the convolution integral

First of all Figures 4, 5 and 6 will be used to illustrate how the convolution integral of
two density functions is calculated.

Figure 4 shows the density function f1(t) of the service time on the left and that of the
waiting time f2(t) on the right. The number of elements in both functions is very small
for greater clarity. f1(t) is the approximation of a Gaussian distribution, f2(t) is that of
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doi:10.2195/LJ Not Ref e Plehn 072005

Table 2: Combinations and related calculations of the density functions

Combination calculation of the density function

z = y + x fZ(z) =
∞∫
−∞

fX(x)fY (z − x)dx

z = y − x fZ(z) =
∞∫
−∞

fX(x)fY (z + x)dx

z = y · x fZ(z) =
∞∫
−∞

fX(x)fY ( z
x) 1
|x|dx

z = y
x fZ(z) =

∞∫
−∞

fX(x)fY (xz)|x|dx

Figure 4: Approximation of two density functions

a k-Erlang distribution. The corner nodes are shown by vertical lines. The distribution
functions are approximated element-wise by second order polynomials, for this reason
the approximation functions of the density functions are linear. The inconsistencies at
some corner nodes can be clearly recognized.

According to (21) one of the two functions (here f2) is mirrored on the ordinate and
shifted by t. Figure 5 shows the two density functions together. In this the abscissa, τ ,
the ordinate of the first density function, f1(τ), and the ordinate of the second density
function, f2(t− τ), form a three-dimensional coordinate system.

Figure 5: Orthogonal representation of two density functions to illustrate the integrand
of the convolution integral

The bold section, t, corresponds to the overlap of the two functions. The integration
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interval can be reduced from [−∞;∞] to the range in which neither of the two factors
of the integrand disappears in (21). The transparent rectangle in Figure 5 has sides of
length f1(τi) and f2(t − τi). The area of the rectangle thus corresponds to the value
of the integrand from (21) for a specific τi. When integrating this rectangle over the
integration interval, one obtains the volume shown in Figure 6. The value of this volume
thus equals h(t).

Figure 6: Geometric representation of the convolution of two density functions, the vol-
ume is equivalent to the value of the convolution integral at position t

Figure 7: Left: approximation of a k-Erlang distribution function; right: geometric rep-
resentation of the convolution

Replacing the density function, f2(t − τ), in Figure 6 by the distribution function,
F2(t − τ), yields Figure 7. The distribution function, F2(t − τ), is shown on the left,
and on the right next to it is the volume corresponding to the convolution integral (22).
The value of the volume H(t) is equivalent to the probability that the sum of the service
time, t1, and waiting time, t2, is less than or equal to a certain throughput time t.

The convolution of the two distribution functions F1(t) and F2(t) are now to be cal-
culated for the position t. The convolution integral is given by (22):

H(t) =
∞∫

−∞

d

dτ
F1(τ) · F2(t− τ)dτ (23)

For τ < t1,min, F1 = 0 applies, and for τ > t − t2,min, F2 = 0. Furthermore, F1(τ >
t1,max) = 1, which therefore means that f1(τ > t1,max) = 0. The integration interval
can be reduced to [τ1,min, τmax]:
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τmin = t1,min (24)
τmax = min {t1,max, t− t2,min} (25)

Equation (23) can thus be simplified to:

H(t) =
τmax∫

τmin

f1(τ) · F2(t− τ)dτ (26)

As explained above, the function F1 is defined by N1 elements, the approximation
functions in each case are second order polynomials. Let k1 be used to number the
elements continuously (k1 ∈ [1;N1]). If the argument t is found within the element k1,
then tu,k1 ≤ t < to,k1 , with tu,k1 and to,k1 being the lower and upper corner nodes1 of the
k1th element. In general, other polynomial coefficients apply for each element, which
have the index k1. This applies in analogy for the function F2, where the elements are
denoted by the index k2. In general the following applies for the functions within an
element:

F1(t)k1 = a1,k1 · t2 + b1,k1 · t + c1,k1 (27)
F2(t)k2 = a2,k2 · t2 + b2,k2 · t + c2,k2 (28)

Hence the following applies for the two factors of the convolution integral in (26):

f1(τ)k1 = 2 · a1,k1 · τ + b1,k1 (29)
F2(t− τ)k2 = a2,k2 · (t− τ)2 + b2,k2 · (t− τ) + c2,k2 (30)

The integration interval from (26) is divided into M subintervals for which the poly-
nomial coefficients of the two functions are always constant. The points at which the
integration interval is divided are corner nodes of F1 or of F2. The M subintervals are
denoted by the index i (i ∈ [1;M ]). Elements k1 and k2 of the FE approximations F1

and F2 are uniquely assigned to each subinterval. It therefore follows that:

H(t) =
M∑
i=1

ti∫
ti−1

f1(τ)i · F2(t− τ)i dτ (31)

The division of the integration interval into M = 8 subintervals is shown in Figure
(8) for the above example. Table 3 contains the assignment of the elements k1 and k2

of the approximations to the subintervals i.

1In Figures 4 to 7 the corner nodes are indicated by parallel lines to the ordinate.
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Figure 8: Division of the integration interval into M = 8 subintervals each with constant
polynomial coefficients of the FE approximations F1 and F2.

Table 3: Assignment of the elements k1 and k2 to the subintervals i

i 1 2 3 4 5 6 7 8

k1 1 1 1 2 2 2 3 3

k2 6 5 4 4 3 2 2 1

In general the integration interval [t1,min;min{t1,max, t− t2,min}] from (22) is divided
into M intervals [ti−1; ti]. The set for the new interval limits is:

{ti | i ∈ [0;M ]} = {t0 = t1,min}⋃
{to,k1 | to,k1 ∈ [t0; tM ], k1 ∈ [1;N1]}⋃
{t− tu,k2 | t− tu,k2 ∈ [t0; tM ], k2 ∈ [1;N2]}⋃
{tM = min{t1,max; t− t2,min}} (32)

Where ti−1 < ti applies for all i. Equations (29) and (30) are now inserted into (31).
During this process the polynomial coefficients are given new indexes2.

H(t) =
M∑
i=1

ti∫
ti−1

[
(2 · a1,i · τ + b1,i)

·
(
a2,i · (t− τ)2 + b2,i · (t− τ) + c2,i

) ]
dτ (33)

2Summing takes place over i = 1 to M . However, i ∈ [0; M ] applies for the indices of the interval limits.
The reason for this is that M adjacent intervals are naturally described by M + 1 interval limits.
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=
M∑
i=1

[
1
2
a1,ia2,iτ

4 +

(
1
3
b1,ia2,i −

2
3
a1,ib2,i −

4
3
a1,ia2,it

)
τ3

+

(
a1,ia2,it

2 + a1,ib2,it− b1,ia2,it + a1,ic2,i −
1
2
b1,ib2,i

)
τ2

+
(
b1,ia2,it

2 + b1,ib2,it + b1,ic2,i

)
τ

]ti

ti−1

(34)

As the polynomial coefficients of both functions are known for all M integration in-
tervals [ti−1; ti], the convolution integral H(t) for the point t is determined with (34).

Mesh Generation

The approximation intervals of the distribution functions F1(t1) and F2(t2) are [t1,min; t1,max]
and [t2,min; t2,max]. Let the approximation interval of the distribution function for the
sum H(t) be [tmin; tmax]. The interval limits are given directly by the sum relationship
t = t1 + t2:

tmin = t1,min + t2,min (35)
tmax = t1,max + t2,max (36)

If N is the number of the elements, the convolution integral is calculated at 10 ·N +
1 equidistant reference points in the interval [tmin; tmax]. The error function δf (t) is
determined by numerical differentiation from this point set as described in Section .
The inverse function δ−1

f (t) is then used to calculated the N + 1 corner nodes. The
convolution integral has to be solved again for each of the function values at the corner
and mid-side nodes. Monotony is guaranteed, as explained in Section . In accordance
with Table 1 the matrix from the node coordinates and function values then yields the
Finite Element approximation of the convolution for the two functions.

Hardware requirements

The algorithms presented were converted into software with Microsoft Visual Basic 6.
When considering the computing time, it should be noted that code optimizations or
possibly the choice of another language could considerably reduce the time required.
The intention was merely to demonstrate the functional method.

Memory requirements

When Table 1 is considered, it can be seen that the 3 · (N + 1) matrix contains a total
of 3 · N − 1 variable elements. If these are mapped by variables with double accuracy
(double type), this gives a memory requirement of 8 · (3 ·N − 1) = 24 ·N − 8 bytes. As a
rule, a sufficient approximation of the probability distribution can be obtained with as
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few as 20 elements. With 50 elements the mean square error is < 10−7. In the latter case
this yields a memory requirement of 1192 bytes for each stochastic variable. Compared
to the capacity of today’s computers the required memory is very low.

Computing time

The computing time also depends upon the number of elements. In the mesh optimiza-
tion presented the convolution integral is calculated at 12·(N−1) points. If the functions
to be convoluted are also approximated by N elements, then for each convolution inte-
gral the sum is formed over a maximum of 2 ·N summands according to equation (34).
Here the coefficients aj,i, bj,i and cj,i are to be calculated from the node parameters. A
standard PC only requires approximately 0.7 s to calculate a convolution in which the
number of elements is N = 20, including mesh optimization. In contrast, a convolution
calculation with N = 100 elements takes as much as 12 s. Consequently, the computing
time required for more complex models is not inconsiderable. The quality of the approx-
imation for individual distributions should not be selected too high. N = 20 elements
should in general be sufficient. The time required for a simulation experiment with this
method is less than that of conventional, discretely stochastic simulations. However,
the advantage primarily lies in the fact that in several simulation experiments only the
submodels in which the distributions are changed have to be recalculated.

Summary

The approximation and combination of stochastic variables using the FE method was
presented. Random variables with any possible distribution functions can be trans-
formed and combined. The quality of the approximation can be varied by the number
of elements and thus be adapted to the requirements. An algorithm for mesh generation
was developed to adapt the elementation to the course of the distribution function. Ad-
dition was shown to illustrate the combination of random variables. The algorithm used
for this is based on numerical calculation of the convolution integral. Other combina-
tions such as subtraction, multiplication or division can be performed in an analogous
manner. The hardware requirements were estimated. The quantity of data generated
can be saved without any difficulty. The computing time required increases rapidly as
the number of elements rises. Nevertheless, the development of increasingly powerful
computers enables models of a higher complexity to be modelled and computed within
an acceptable time.
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